Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Compute Local Volatility and Implied Volatility Using the Finance Package
Fitting Implied Volatility Surface
First let us import prices of S&P 500 call options available on October 27, 2006.
Extract data from this matrix.
Value of the underlying, risk-free rate and dividend yield.
Extract times and strikes for which data is available.
Implied volatilities for options maturing in December 2006.
Implied volatilities for options maturing in December 2007.
We will use the following model for the volatility surface.
We can compute the corresponding Black-Scholes price as a function of strike and maturity.
We can use non-linear fitting routines from the statistics data to find the values of that best fit our data. Construct a matrix of parameters and a vector of the corresponding value of the objective function.
Here is the corresponding implied volatility function.
Here is another way to estimate these parameters.
We can compare both fits with the actual implied volatilities.
Modeling with Local Volatility
We will consider the same model for the local volatility except that in this case we will use parameters that were fit to some market data.
Consider two functions. The first one returns the Black-Scholes price of a European call option for our model. The second one returns the Black-Scholes price of a European put option for our model. We will assume that these functions are given two us (e.g. obtained by interpolating the market data) and will try to determine the corresponding local volatility term structure.
Construct the corresponding local volatility surface.
We can construct the corresponding local volatility surface and implied volatility surface.
We can now construct a Black-Scholes process which has the volatility structure we just obtained.
As an alternative, we can use the implied volatility surface to construct an implied trinomial tree.
Compute some option prices. We can use Monte-Carlo simulation to price European-style options and lattice methods to price American-style options.
Here is an example of an Asian-type option with European exercise.
Download Help Document