Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Finance[BrownianMotion] - define one- or multi-dimensional Brownian motion process
Calling Sequence
BrownianMotion(, mu, sigma, opts)
BrownianMotion(, mu, sigma, t, opts)
BrownianMotion(, Mu, Sigma)
Parameters
-
real constant; initial value
mu
algebraic expression, operator or procedure; drift parameter
sigma
algebraic expression, operator, procedure or a one-dimensional stochastic process; volatility
t
time parameter
Vector; initial value
Mu
Vector; drift parameter
Sigma
Matrix; covariance matrix
opts
(optional) equation(s) of the form option = value where option is scheme; specify options for the BrownianMotion command
Description
The BrownianMotion(, mu, sigma) and BrownianMotion(, mu, sigma, t) commands create a new one-dimensional Brownian motion process. This is a stochastic process , which is governed by the stochastic differential equation (SDE)
where
is the drift,
is the volatility,
and
is the standard Wiener process.
The parameter defines the initial value of the underlying stochastic process. It must be a real constant.
In the simplest case of a constant drift, mu is a real number (i.e. any expression of type ). Time-dependent drift can be given either as an algebraic expression or as a Maple procedure. If mu is given as an algebraic expression, then the parameter must be passed to specify which variable in mu should be used as a time variable. Maple procedure defining a time-dependent drift must accept one parameter (the time) and return the corresponding value for the drift.
Similar to the drift, the volatility parameter can be constant or time dependent. In addition to this, the volatility can involve other (one-dimensional) stochastic variables. Note that stochastic drift is not supported.
The BrownianMotion(, Mu, Sigma) defines an -dimensional Brownian motion with drift Mu and covariance Sigma. This process is defined by the SDE
is a vector of size ,
is a -matrix ,
is the standard -dimensional Wiener process.
In this case the drift vector and the covariance matrix are time-independent. The drift parameter Mu must be given as a Vector and the covariance matrix Sigma must be a given as a symmetric matrix (see Matrix).
The scheme option specifies the discretization scheme used for simulation of this process. By default the standard Euler scheme is used. When scheme is set to unbiased the transition density will be used to simulate a value given . This scheme is appropriate in the case of a time-dependent drift and/or volatility.
Options
scheme = unbiased or Euler -- This option specifies which discretization scheme should be used for simulating this process.
Compatibility
The Finance[BrownianMotion] command was introduced in Maple 15.
For more information on Maple 15 changes, see Updates in Maple 15.
Examples
First consider the case of a one-dimensional Brownian motion with constant drift and volatility.
Compute the drift and diffusion for functions of .
Here is an example of a one-dimensional Brownian motion with time-dependent parameters given in algebraic form.
Here is the same example but with drift and volatility given in the form of Maple procedures.
Here is an example of a two-dimensional Brownian motion.
You can simulate values for any path function given as a Maple procedure.
Here are examples involving stochastic volatility.
Here is the same using different discretization schemes. For presentation purposes let us consider a Brownian motion with very low volatility and time-dependent drift. Compare the simulated results with the corresponding solution of an ordinary (non-stochastic) differential equation.
See Also
Finance[BlackScholesProcess], Finance[CEVProcess], Finance[Diffusion], Finance[Drift], Finance[ExpectedValue], Finance[GeometricBrownianMotion], Finance[ItoProcess], Finance[PathPlot], Finance[SamplePath], Finance[SampleValues], Finance[StochasticProcesses], Finance[WienerProcess]
References
Glasserman, P., Monte Carlo Methods in Financial Engineering. New York: Springer-Verlag, 2004.
Hull, J., Options, Futures, and Other Derivatives, 5th. edition. Upper Saddle River, New Jersey: Prentice Hall, 2003.
Download Help Document