Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Tensor[Christoffel] - find the Christoffel symbols of the first or second kind for a metric tensor
Calling Sequences
Christoffel(g, h, keyword)
Parameters
g - a metric tensor on the tangent bundle of a manifold
h - (optional) the inverse of the metric g
keyword - (optional) a keyword string, either "FirstKind" or "SecondKind"
Description
The Christoffel symbol of the second kind for a metric g is the unique torsion-free connection C such that the associated covariant derivative operator nabla satisfies nabla(g) = 0.
The Christoffel symbol of the first kind is the non-tensorial quantity obtained from the Christoffel symbol of the second kind by lowering its upper index with the metric g.
The default value for the keyword is "SecondKind" , that is, the calling sequence Christoffel(g) computes the Christoffel symbol of the second kind.
The inverse of the metric g can be computed using InverseMetric.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form Christoffel(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-Christoffel.
Examples
Example 1.
First create a 2 dimensional manifold M and define a metric on the tangent space of M.
Calculate the Christoffel symbols of the first and second kind for g1.
Example 2.
Define a frame on M and use this frame to calculate the Christoffel symbols for a metric on the tangent space of M.
See Also
DifferentialGeometry, Tensor, CovariantDerivative, Physics[D_], CurvatureTensor, Physics[Riemann], DirectionalCovariantDerivative, GeodesicEquations, ParallelTransportEquations, TorsionTensor
Download Help Document