Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LieAlgebras[SimpleRoots] - find the simple roots for a set of positive roots
Calling Sequences
SimpleRoots(PR
Parameters
PR - a list of vectors, giving the positive roots of a simple Lie algebra
Description
Let be a list of roots for either an abstract root system or for a simple Lie algebra. In particular, must have an even number of elements and if then . Write where, if then and then The set is called the set of positive roots. The choice of positive roots is not unique.
If is set of positive roots,then a root is called a simple root if it is not a sum of any other 2 positive roots.
If is a set of simple roots for , then every root in is a linear combination of the roots in with positive integer coefficients.
The number of simple roots equals the rank of the Lie algebra.
Examples
Example 1.
We calculate the simple roots for the Lie algebra This is the 36-dimensional Lie algebra of matrices which are skew-symmetric with respect to the skew form
We use the command SimpleLieAlgebraData to obtain the structure equations for this Lie algebra.
The following diagonal elements define a Cartan subalgebra. (This can be calculated using the command CartanSubalgebra).
Here is the corresponding root space decomposition.
We calculate the positive roots for .
The rank of is 4 so we should find 4 positive roots.
We check that the positive roots are positive integer linear combinations of the simple roots with the GetComponents command.
See Also
DifferentialGeometry, DGzip, GetComponents, LieAlgebra, RootSpaceDecomposition, PositiveRoots, SimpleLieAlgebraData
Download Help Document