Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LieAlgebras[QuotientRepresentation] - find the induced representation on the quotient space of the representation space by an invariant subspace
Calling Sequences
QuotientRepresentation(rho, S, C, W)
Parameters
rho - a representation of a Lie algebra g on a vector space V
S - a list of vectors in V whose span defines a rho invariant subspace of V
C - a list of vectors in V defining a complementary subspace to S
W - a Maple name or string, giving the frame name for the representation space for the quotient representation
Description
If rho: g -> gl(V) is a representation and S is a subspace of V, then S is rho invariant if rho(x)(y) in S for all x in g and y in S. For any y in V, let [y] = y + S denote the coset of y in the quotient space V/S.
The command QuotientRepresentation(rho, S, C, W) returns the representation phi of g on the vector space V/S defined by phi(x)([y]) = [rho(x)(y)] for all x in g and [y] in V/S. The coset representatives of the vectors in C in the quotient space V/S give the basis used in V/S to calculate the matrices for the linear transformation phi(x).
Examples
Example 1.
Initialize the Lie algebra Alg1.
Initialize the representation space V.
Define the Matrices which specify a representation of Alg1 on V.
Define the representation.
Define a subspace S of V and use the Query command to check that it is invariant.
Pick a complement C to S in V. This complement need not be invariant.
Define a vector space for the induced representation of rho on V/S.
Compute the quotient representation. Note that in this example the matrices are just the lower 3x3 blocks of the matrices in the original representation.
See Also
DifferentialGeometry, Library, LieAlgebras, Query, Retrieve
Download Help Document