Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LieAlgebras[Killing] - find the Killing form (matrix) of a Lie algebra, evaluate the Killing form on a pair of vectors, evaluate the Killing form on a subspace
LieAlgebras[KillingForm] - find the Killing form (symmetric tensor) of a Lie algebra
Calling Sequences
Killing(x, y)
Killing(Alg)
Killing(h)
KilllingForm(Alg)
Parameters
x,y - a pair of vectors in a Lie algebra g
Alg - (optional) the name of a Lie algebra
h - a list of vectors defining a basis for a subspace of a Lie algebra g
Description
The Killing form on a Lie algebra g is the symmetric quadratic form defined by Killing(x, y) = trace(ad(x).ad(y)) for any x, y in g. Here ad(x) and ad(y) are the ad matrices for the vector x and y.
In terms of the structure constants C^k_{ij} with respect to the basis e_i for g, Killing(e_i, e_j) = C^k_{il} C^l_{jk} (summation on l).
Killing() calculates the Matrix [Killing(e_i, e_j)] = [C^k_{il} C^l_{jk}], where the C^k_{ij} are the structure constants for the current Lie algebra.
Killing(Alg) calculates the Killing Matrix for the Lie algebra Alg.
Killing(h) calculates the Killing Matrix restricted to the subalgebra h.
The command Killing is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form Killing(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Killing(...).
Examples
Example 1.
First initialize a Lie algebra and display the Lie bracket multiplication table.
Compute the Killing form on the vectors x = e1 + e2 and y = e1 - e2 + e3.
Compute the Killing form for the current Lie algebra.
Compute the Killing form restricted to the subspace S = [e2, e3].
Example 2.
Here is the Killing form for the Lie algebra from Example 1, given as a symmetric, covariant tensor on the Lie algebra.
See Also
DifferentialGeometry, LieAlgebras, Adjoint, MultiplicationTable, Query[Semisimple]
Download Help Document