Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LieAlgebras[Complexify] find the complexification of a Lie algebra
Calling Sequences
Complexify(AlgName1, AlgName2)
Parameters
AlgName1 - name or string, the name of a Lie algebra g
AlgName2 - name or string, the name for the complexification of g
Description
The complexification of a real Lie algebra g of dimension n is a real Lie algebra of dimension 2n. If e1, e2, ..., en is a basis for g, then e1, e2, ..., en, Ie1, Ie2, ..., Ien, where I^2 = - 1, is a basis for the complexification of g.
Complexify(AlgName1, AlgName2) calculates the complexification of the Lie algebra g defined by AlgName1.
A Lie algebra data structure is returned for the complexified Lie algebra with name AlgName2. A Lie algebra data structure contains the structure constants of a Lie algebra in a standard format used by the LieAlgebras package.
The command Complexify is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form Complexify(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Complexify(...).
Examples
Example 1.
First we initialize a Lie algebra and then display its multiplication table.
We complexify Alg1 and call the result Alg2.
We note that the original Lie algebra [e1, e2, e3], as a subalgebra of its complexification, admits a symmetric complement.
See Also
DifferentialGeometry, LieAlgebras, Query[SymmetricPair]
Download Help Document