Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LieAlgebras[CartanMatrix] - find the Cartan matrix for a simple Lie algebra from a root space decomposition, display the Cartan matrix for a given root type
Calling Sequences
CartanMatrix()
Parameters
SR - a list of column vectors, defining the simple roots of a simple Lie algebra
RSD - a table, defining the root space decomposition of an initialized Lie algebra
RT - a string, the root type of a simple Lie algebra "A", "B", "C", "D", "E", "F", "G"
m - a positive integer, the dimension of the Cartan matrix
Description
Let g be a simple Lie algebra, h a Cartan subalgebra, and the root space decomposition of g with respect to h. Let <$,$> be the Killing form of g. For each root , there are vectors and such that and These conditions uniquely determine The vector can be computed using the command RootToCartanSubalgebraElementH.
Let be a set of simple roots for g. Then the associated Cartan matrix is the matrix with entries < , / <, >. The entries of the Cartan matrix are 0, 1, -1 or 2. The Cartan matrix is independent of the choice of Cartan subalgebra h but is dependent upon the ordering of the simple roots in
The Cartan matrix is the fundamental invariant for semi-simple Lie algebras over C -- two complex semi-simple Lie algebras are isomophic if and only if their Cartan matrices are the same, modulo a permutation of the vectors in the Cartan subalgebra. The command CartanMatrixToStandardForm will transform a given Cartan matrix to a standard form.
The Cartan matrix encodes the re-construction of the root system of the Lie algebra from its simple roots. See PositiveRoots .
The information contained in the Cartan matrix is also encoded in the Dynkin diagram of the Lie algebra.
The first calling sequence calculates the Cartan matrix of a Lie algebra from a set of simple roots and a root space decomposition.
The second calling sequence displays the standard form of the Cartan matrix for each possible root type of a simple Lie algebra.
Examples
Example 1.
We use the command SimpleLieAlgebraData to obtain the Lie algebra data for the Lie algebra . This is the 15-dimensional Lie algebra of trace-free, skew-Hermitian matrices
We surpress the output of this command which is a lengthy list of structure equations.
Initialize this Lie algebra -- the basis elements are given the default labels
We remark that the command StandardRepresentation can be used to explicitly display the matrices defining .
The first 3 matrices define a Cartan subalgebra. We can use the Query command to check this
We use the command RootSpaceDecomposition to find the root space decomposition for with respect to this Cartan subalgebra.
A choice of simple roots for this root space decomposition is:
This set of simple roots can be determined by the command SimpleRoots. The Cartan matrix for this root space decomposition and choice of simple roots is :
We easily identify this as the standard Cartan matrix for
Notice that a permutation of the simple roots gives a permuted Cartan matrix.
Example 2.
For the exceptional Lie algebras , and there are two different conventions for the Cartan matrix. For these are:
See Also
DifferentialGeometry, DynkinDiagram, CartanSubalgebra, LieAlgebras, RootSpaceDecomposition, SimpleRoots
Download Help Document