Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
DifferentialGeometry[IntersectSubspaces] - find the intersection of a list of vector subspaces of vectors, forms or tensors
Calling Sequence
IntersectSubspaces(S)
Parameters
S
-
a list [A1, A2, ...], where each Ai is a list of vectors, forms or tensors
Description
IntersectSubspaces(S) computes the intersection of the subspaces spanned by the elements of the list.
This command is part of the DifferentialGeometry package, and so can be used in the form IntersectSubspaces(...) only after executing the command with(DifferentialGeometry). It can always be used in the long form DifferentialGeometry:-IntersectSubspaces.
Examples
Initialize a 4-dimensional manifold M with coordinates [x, y, z, w].
Example 1.
Find the intersection of the three 3 dimensional subspaces spanned by A1, A2, A3.
Example 2.
Find the intersection of the subspaces of 2-forms spanned by B1 and B2. Check the result using the GetComponents command.
The command GetComponents returns the components of the 2-form in C with respect to the 2-forms in B1 and B2. This proves that the 2-form in C does indeed belong to the intersection of the spans of B1 and B2.
See Also
DifferentialGeometry, DGbasis, GetComponents
Download Help Document