Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
tensor[Riemann] - compute the covariant Riemann curvature tensor
Calling Sequence
Riemann(ginv, D2g, Cf1)
Parameters
ginv
-
rank two tensor_type of character [-1,-1] representing the contravariant metric tensor; specifically,
D2g
rank four tensor_type of character [-1,-1,-1,-1] representing the second partial derivatives of the COVARIANT metric tensor; specifically,
Cf1
rank three tensor_type of character [-1,-1,-1] representing the Christoffel symbols of the first kind; specifically,
Description
The routine Riemann(ginv, D2g, Cf1) computes the components of the covariant Riemann tensor using the contravariant metric tensor ginv, the second partial derivatives of the metric D2g, and the Christoffel symbols of the 1st kind Cf1. The result is a tensor_type with character [-1, -1, -1, -1] which uses the tensor package's 'cov_riemann' indexing function.
ginv should be indexed using the symmetric indexing function. D2g should be indexed using the `d2met` indexing function. Cf1 should be indexed using the `cf1` indexing function. All of the parameters can be obtained using the appropriate tensor package routines once the metric is known.
Indexing Function: The result uses the `cov_riemann` indexing function to implement the symmetrical properties of the indices of the covariant riemann tensor. Specifically, the indexing function implements the following:
skew-symmetry in the first and second indices
skew-symmetry in the third and fourth indices
symmetry in the first and second pairs of indices
Simplification: This routine uses the `tensor/Riemann/simp` routine for simplification purposes. The simplification routine is applied to each component of result after it is computed. By default, `tensor/Riemann/simp` is initialized to the `tensor/simp` routine. It is recommended that the `tensor/Riemann/simp` routine be customized to suit the needs of the particular problem.
This function is part of the tensor package, and so can be used in the form Riemann(..) only after performing the command with(tensor) or with(tensor, Riemann). The function can always be accessed in the long form tensor[Riemann](..).
Examples
Define the coordinate variables and the covariant components of the Schwarzchild metric.
Compute the Riemann tensor.
Show the nonzero components.
map(proc(x) if RMNc[op(x)]<>0 then x=RMNc[op(x)] else NULL end if end proc, [ indices(RMNc)] );
You can also view the result using the tensor package function displayGR.
See Also
Physics[Christoffel], Physics[D_], Physics[d_], Physics[Einstein], Physics[g_], Physics[LeviCivita], Physics[Ricci], Physics[Riemann], Physics[Weyl], tensor, tensor/partial_diff, tensor[Christoffel1], tensor[displayGR], tensor[indexing], tensor[invert], tensor[simp], tensor[tensorsGR]
Download Help Document