Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
sumtools[sumrecursion] - Zeilberger's algorithm
Calling Sequence
sumrecursion(f, k, s(n))
Parameters
f
-
expression
k
name, summation variable
n
name, recurrence variable
s
name, recurrence function
Description
This function is an implementation of Koepf's extension of Zeilberger's algorithm, calculating a (downward) recurrence equation for the sum
the sum to be taken over all integers k, with respect to n if f is an (m,l)-fold hypergeometric term with respect to (n,k) for some m and l. The minimal values for m, and l are determined automatically.
The output is a recurrence which equals zero. The recurrence is a function of n the recurrence variable and .
An expression f is called (m,l)-fold hypergeometric term with respect to (n,k) if
are rational with respect to n and k. This is typically the case for ratios of products of rational functions, exponentials, factorials, binomial coefficients, and Pochhammer symbols that are rational-linear in their arguments. The implementation supports this type of input.
The command with(sumtools,sumrecursion) allows the use of the abbreviated form of this command.
Examples
Dougall's identity
See Also
sum, sumtools, sumtools[gosper], SumTools[Hypergeometric][Zeilberger], sumtools[hyperterm]
Download Help Document