Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Lienard ODEs
Description
The general form of the Lienard ODE is given by the following:
Lienard_ode := diff(y(x),x,x)+f(x)*diff(y(x),x)+y(x)=0;
where f(x) is an arbitrary function of x. See Villari, "Periodic Solutions of Lienard's Equation".
All linear second order homogeneous ODEs can be transformed into first order ODEs of Riccati type. That can be done by giving the symmetry [0,y] to dsolve (all linear homogeneous ODEs have this symmetry) or just calling convert (see convert,ODEs).
Examples
Reduction to Riccati by giving the symmetry to dsolve
The reduced ODE above is of Riccati type
Converting this ODE into a first order ODE of Riccati type
In the answer returned by convert, there are the Riccati ODE and the transformation of the variable used. Changes of variables in ODEs can be performed using ?PDEtools[dchange]. For example, using the transformation of variables above, we can recover the result returned by convert.
See Also
DEtools, odeadvisor, dsolve, and ?odeadvisor,<TYPE> where <TYPE> is one of: quadrature, missing, reducible, linear_ODEs, exact_linear, exact_nonlinear, sym_Fx, linear_sym, Bessel, Painleve, Halm, Gegenbauer, Duffing, ellipsoidal, elliptic, erf, Emden, Jacobi, Hermite, Lagerstrom, Laguerre, Liouville, Lienard, Van_der_Pol, Titchmarsh; for other differential orders see odeadvisor,types.
Download Help Document