Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
linalg[ismith] - integer-only Smith normal form
Calling Sequence
ismith(A)
ismith(A, U, V)
Parameters
A
-
rectangular matrix of integers
U
name
V
Description
Important: The linalg package has been deprecated. Use the superseding packages, LinearAlgebra and VectorCalculus, instead.
- For information on migrating linalg code to the new packages, see examples/LinearAlgebraMigration.
The function ismith computes the Smith normal form S of an n by m rectangular matrix of integers.
If two n by n matrices have the same Smith normal form, they are equivalent.
The Smith normal form is a diagonal matrix where
rank(A) = number of nonzero rows (columns) of S
sign(S[i,i]) = 1 for 0 < i <= rank(A)
S[i,i] divides S[i+1,i+1] for 0 < i < rank(A)
product(S[i,i],i=1..r) divides det(M) for all minors M of rank 0 < r <= rank(A)
Hence if n = m and rank(A) = n then .
The Smith normal form is obtained by doing elementary row and column operations. This includes interchanging rows (columns), multiplying through a row (column) by -1, and adding integral multiples of one row (column) to another.
Although the rank and determinant can be easily obtained from S this is not an efficient method for computing these quantities except that this may yield a partial factorization of without doing any explicit factorizations.
In the case of three arguments, the second argument U and the third argument V will be assigned the transformation matrices on output, such that smith(A) = U &* A &* V.
The command with(linalg,ismith) allows the use of the abbreviated form of this command.
Examples
See Also
linalg(deprecated)[ihermite], linalg(deprecated)[smith], LinearAlgebra, LinearAlgebra[SmithForm]
Download Help Document