Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
linalg[hermite] - Hermite Normal Form (reduced row echelon form)
Calling Sequence
hermite(A, x)
hermite(A, x, U)
Parameters
A
-
rectangular matrix of polynomials in x
x
name
U
Description
Important: The linalg package has been deprecated. Use the superseding packages, LinearAlgebra and VectorCalculus, instead.
- For information on migrating linalg code to the new packages, see examples/LinearAlgebraMigration.
The function hermite computes the Hermite Normal Form (reduced row echelon form) of an m by n rectangular matrix of univariate polynomials in x over the field of rational numbers Q, or rational expressions over Q.
In principle this should work for polynomials in x over any field F, i.e. the Euclidean domain F[x], but in practice the code is only as powerful as Maple's normal function.
The Hermite normal form is obtained by doing elementary row operations on A. This includes interchanging rows, multiplying through a row by a unit, and subtracting a multiple of one row from another.
One can use transposes to obtain the column form of the Hermite Normal Form of a matrix.
In the case of three arguments, the third argument U will be assigned the transformation matrix on output, such that the following holds: hermite(A) = U &* A.
The command with(linalg,hermite) allows the use of the abbreviated form of this command.
Examples
To obtain the column form of HNF for H do
See Also
Hermite, linalg(deprecated)[ihermite], linalg(deprecated)[smith], LinearAlgebra, LinearAlgebra[HermiteForm], Smith
Download Help Document