Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Divide - Division of polynomials over algebraic extension fields
Calling Sequence
evala(Divide(P, Q, 'p'))
Parameters
P, Q
-
polynomials over an algebraic number or function field
p
(optional) a name
Description
This function returns true if the polynomial Q divides P and false otherwise. The coefficients of P and Q must be algebraic functions or algebraic numbers.
Algebraic functions and algebraic numbers may be represented by radicals or with the RootOf notation (see type,algnum, type,algfun, type,radnum, type,radfun).
When Q divides P, the optional argument p is assigned the quotient P/Q.
The division property is meant in the domain where:
x is the set of names in P and Q which do not appear inside a RootOf or a radical,
K is a field generated over the rational numbers by the coefficients of P and Q.
The arguments P and Q must be polynomials in x.
Algebraic numbers and functions occurring in the results are reduced modulo their minimal polynomial (see Normal).
If a or b contains functions, their arguments are normalized recursively and the functions are frozen before the computation proceeds.
Other objects are frozen and considered as variables.
Examples
The second argument below is not a polynomial. Therefore, an error is returned:
Error, (in evala/Divide/preproc0) invalid arguments
See Also
Divide, divide, evala, Quo, RootOf
Download Help Document