Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
dsolve/piecewise - find solution of ordinary differential equations with piecewise coefficients
Description
The dsolve function solves differential equations with piecewise coefficients. It solves general first order linear, linear constant coefficient with piecewise perturbation, and Riccati equations. It can handle some cases where the differential equation is solved by integration or variation of parameters.
The solutions are found in terms of distribution theory and translated into a piecewise expression.
You can verify a solution by substituting the solution into the equation. However, if the differential equation has jump discontinuities, the verification must be done in terms of Heaviside functions because the derivative at a discontinuous point is undefined in the piecewise function.
The theory is based on the dissertation Martin von Mohrenschildt. "Symbolic Solutions of Discontinuous Differential Equations." Swiss Federal Institute of Technology ETHZ No. 10768
Examples
First Order:
Linear with discontinuous perturbation:
Solutions can also be tested by using odetest.
Non linear:
See Also
convert[Heaviside], convert[piecewise] , dsolve, dsolve[taylorseries], odetest, piecewise
Download Help Document