Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
convert/confrac - convert to continued-fraction form
Calling Sequence
convert(expr, confrac)
convert(expr, confrac, maxit)
convert(expr, confrac, 'cvgts' )
convert(expr, confrac, maxit, 'cvgts')
convert(expr, confrac, 'subdiagonal')
convert(expr, confrac, var)
convert(expr, confrac, var, ctype)
convert(expr, confrac, var, order)
convert(expr, confrac, var, order, 'subdiagonal')
Parameters
expr
-
algebraic expression
maxit
(optional) non-negative integer
cvgts
(optional) name
var
(optional) variable
ctype
(optional) one of 'monic', 'regular', or 'simple'. The default is 'monic'.
order
Description
The convert(expr, confrac) command converts a number, series, rational function, or other algebraic expression to a continued-fraction approximation.
If expr is numeric then maxit (optional) is the maximum number of partial quotients to be computed, and cvgts (optional) will be assigned a list of the convergents. A list of the partial quotients is returned as the function value.
If expr is a series and no additional arguments are specified, a continued-fraction approximation (to the order of the series) is computed. It is equivalent to either an or Pade approximant (depending on the parity of the order). By specifying 'subdiagonal' as an optional third argument, the continued-fraction computed will be equivalent to a or Pade approximant.
If expr is a ratpoly (quotient of polynomials) in x, the calling sequence is convert(expr, confrac, x). The rational form is converted into its associated continued-fraction form as required for efficient evaluation of numerical subroutines.
If expr is any other algebraic expression, the third argument specifies a variable and (optionally) the fourth argument specifies order. The series function is applied to the arguments to obtain a series and then case series applies.
By default, a rational polynomial is converted to a monic continued fraction, that is, one with monic polynomials in the non-fractional part of the denominator. If the option regular or simple is specified then a regular or a simple continued fraction is returned, respectively.
Otherwise, `convert/confrac` is applied to each component of a non-algebraic structure.
For information on the inverse transformation, see numtheory[cfrac].
Compatibility
The option subdiagonal can be used together with the optional argument var as of Maple 16.
The subdiagonal option was updated in Maple 16.
Examples
See Also
convert/ratpoly, numtheory[cfrac]
Download Help Document