Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
algcurves[plot_knot] - make a tubeplot for a singularity knot
Calling Sequence
plot_knot(f, x, y, opt)
Parameters
f
-
algebraic curve with a singularity at the point 0
x, y
variables
opt
(optional) a sequence of options
Description
Let f be a polynomial in x and y giving an algebraic curve in the plane C^2 with a singularity at the point . The output of this procedure is called the singularity knot of this singularity. This knot is defined as follows: By identifying C^2 with R^4 the curve can be viewed as a two-dimensional surface over the real numbers. This procedure computes the intersection of this surface with a sphere in R^4 with radius epsilon and center 0. The intersection consists of a number of closed curves over the real numbers. After applying a projection from the sphere (which is three-dimensional over R) to R^3 these curves can be plotted by the tubeplot command in the plots package. Such a plot gives information about the singularity of f at the point 0. See also: E. Brieskorn, H. Knörrer: Ebene Algebraische Kurven, Birkhauser 1981.
The curve given by f need not be irreducible, but f must be square-free otherwise this procedure does not work.
If printlevel > 1 the number of branches will be printed to the screen. Each branch (i.e. place above the point 0) corresponds to one component in the knot.
Options
epsilon=value -- the radius of the sphere. The default is 1. In some cases a smaller number must be chosen for the picture to be correct.
color=list -- specifying a list of colors results in a plot where each branch gets its own color.
The options for tubeplot can be used as well. In plot_knot these options have the following default values: numpoints=150, radius=0.05, tubepoints=5, scaling=constrained, and style=surface.
Examples
This is the same knot as above, but it looks different because the projection point is different now that x and y are switched. This is the command to create the plot from the Plotting Guide.
See Also
plots[tubeplot]
Download Help Document