Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
algcurves[j_invariant] - The j invariant of an elliptic curve
Calling Sequence
j_invariant(f, x, y)
Parameters
f
-
polynomial in x and y representing a curve of genus 1
x, y
variables
Description
For algebraic curves with genus 1 one can compute a number called the j invariant. An important property of this j invariant is the following: two elliptic (i.e. genus = 1) curves are birationally equivalent (i.e. can be transformed to each other with rational transformations over an algebraically closed field of constants) if and only if their j invariants are the same.
The curve must be irreducible and have genus 1, otherwise the j invariant is not defined and this procedure will fail.
Examples
Check that the genus is 1, because only then is the j invariant defined.
See Also
algcurves[genus], algcurves[Weierstrassform]
Download Help Document