Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Overview of the SumTools[Hypergeometric] Subpackage
Calling Sequence
SumTools[Hypergeometric][command](arguments)
command(arguments)
Description
The SumTools[Hypergeometric] subpackage provides tools for finding closed forms of definite and indefinite sums of hypergeometric type. It can also be used for certifying and proving combinatorial identities. The subpackage consists of three main components:
- Normal forms of rational functions and of hypergeometric terms: MultiplicativeDecomposition, PolynomialNormalForm, RationalCanonicalForm, SumDecomposition
- Algorithms for definite and indefinite sums of hypergeometric type: ExtendedGosper, ExtendedZeilberger, Gosper, IsZApplicable, KoepfGosper, KoepfZeilberger, LowerBound, MinimalZpair, Zeilberger, ZeilbergerRecurrence, ZpairDirect
- Applications: DefiniteSum, IndefiniteSum, WZMethod
Other commands that deal with hypergeometric terms include: AreSimilar, ConjugateRTerm, EfficientRepresentation, IsHolonomic, IsHypergeometricTerm, IsProperHypergeometricTerm, RegularGammaForm, Verify
Each command in the SumTools[Hypergeometric] subpackage can be accessed by using either the long form or the short form of the command name in the command calling sequence.
Since the underlying implementation of the SumTools[Hypergeometric] subpackage is a module, it is also possible to use the form SumTools:-Hypergeometric:-command or SumTools[Hypergeometric]:-command to access a command. For more information, see Module Members.
List of SumTools[Hypergeometric] Subpackage Commands
The following is a list of available commands.
AreSimilar
BottomSequence
ConjugateRTerm
DefiniteSum
EfficientRepresentation
ExtendedGosper
Gosper
IndefiniteSum
IsHolonomic
IsHypergeometricTerm
IsProperHypergeometricTerm
IsZApplicable
KoepfGosper
KoepfZeilberger
MinimalTelescoper
MinimalZpair
MultiplicativeDecomposition
PolynomialNormalForm
RationalCanonicalForm
RegularGammaForm
SumDecomposition
Verify
WZMethod
Zeilberger
ZeilbergerRecurrence
ZpairDirect
To display the help page for a particular Hypergeometric command, see Getting Help with a Command in a Package.
Examples
Definite sum example:
Construct the Apery's recurrence.
Replace n by in .
The above recurrence equation is required in the proof of the irrationality of Zeta(3).
See Also
help, LREtools, rsolve, sum, SumTools, UsingPackages, with
References
Abramov, S.A.; Geddes, K.O.; and Le, H.Q. "Computer Algebra Library for the Construction of the Minimal Telescopers." Proceedings of ICMS'2002, pp. 319-329. World Scientific, 2002.
Le, H.Q.; Abramov, S.A.; and Geddes, K.O. "HypergeometricSum: A Maple Package for Finding Closed Forms of Indefinite and Definite Sums of Hypergeometric Type." Technical Report CS-2001-24. Ontario: Department of Computer Science, University of Waterloo, 2001.
Download Help Document