Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
ScientificErrorAnalysis[Variance] - return the variance of a quantity-with-error
Calling Sequence
Variance( obj )
Parameters
obj
-
quantity-with-error
Description
The Variance( obj ) command returns the variance of the quantity-with-error obj.
The quantity-with-error obj can have functional dependence on other quantities-with-error.
If the quantity-with-error obj does not have functional dependence on other quantities-with-error, the uncertainty of obj is accessed and converted to the variance (by squaring).
If the quantity-with-error obj has functional dependence on other quantities-with-error, the variance is calculated using the usual formula of error analysis involving a first-order expansion with the dependent form and covariances between the other quantities-with-error. This process can be recursive.
The variance in , where depends on the , is
where is the error in , is the covariance between and , and the partials are evaluated at the central values of the .
Variances involving physical constants are calculated naturally and correctly in the implied system of units because central values and errors are obtained from the interface to ScientificConstants.
Examples
See Also
combine/errors, ScientificConstants, ScientificConstants[Constant], ScientificConstants[GetConstant], ScientificConstants[GetError], ScientificErrorAnalysis, ScientificErrorAnalysis and ScientificConstants, ScientificErrorAnalysis[Covariance], ScientificErrorAnalysis[GetCorrelation], ScientificErrorAnalysis[Quantity], ScientificErrorAnalysis[SetCorrelation]
Download Help Document