Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
RationalNormalForms[RationalCanonicalForm] - construct the first and second rational canonical forms of a rational function
Calling Sequence
RationalCanonicalForm[1](F, x)
RationalCanonicalForm[2](F, x)
Parameters
F
-
rational function in x
x
variable
Description
The RationalCanonicalForm[1](F,x) and RationalCanonicalForm[2](F,x) functions construct the first and second rational canonical forms for F, where F is a rational function in x over a field of characteristic , respectively.
If RationalCanonicalForm is called without any indexing, the first rational canonical form is used.
A sequence of five elements , where z is an element in K and are monic polynomials over K such that the following three conditions are satisfied, is returned:
.
for all integers k.
, .
Note: E is the automorphism of K(x) defined by .
The five-tuple that satisfies the three conditions is a strict rational normal form for F. It is a normal form, not a canonical form. See the References section for information about definitions and constructions of the first and second rational canonical forms.
This function is part of the RationalNormalForms package, and so it can be used in the form RationalCanonicalForm(..) only after executing the command with(RationalNormalForms). However, it can always be accessed through the long form of the command by using RationalNormalForms[RationalCanonicalForm](..).
Examples
Check the result from RationalCanonicalForm[1].
Condition 1:
Condition 2:
Condition 3:
See Also
RationalNormalForms[PolynomialNormalForm]
References
Abramov, S., and Petkovsek, M. "Canonical Representations of Hypergeometric Terms." FPSAC'01. 2000.
Download Help Document