Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
QDifferenceEquations[QDispersion] - return the q-dispersion of two polynomials (or all the set of non-negative integers used in its definition)
Calling Sequence
QDispersion(s, t, q, x, 'maximal')
Parameters
s
-
first polynomial
t
second polynomial
q
name or number used as the parameter q, usually q
x
independent variable, for example, x
'maximal'
(optional) indicates the q-dispersion itself must be returned rather than all the set of non-negative integers used in its definition
Description
If two polynomials and , with both and nonzero, are given, the QDispersion(s,t,q,x,'maximal') calling sequence returns their q-dispersion, that is, if the option 'maximal' is specified. Otherwise, the QDispersion(s,t,q,x) calling sequence returns the set of all non-negative integers used in the definition of the q-dispersion.
If and are as above and are non-negative integers, then QDispersion(x^k*s,x^l*t,q,x) returns the same result as QDispersion(s,t,q,x), and similarly if the option 'maximal' is specified.
The efficient algorithm for computing the dispersion of two polynomials is the algorithm by Yiu-Kwong Man and F.J.Wright. This algorithm is based on the factorization of the polynomials involved rather than on the resultant calculation as it was in earlier implementations. This algorithm is adapted for computing the q-dispersion of two polynomials.
Examples
See Also
QDifferenceEquations, QDifferenceEquations[RationalSolution], QDifferenceEquations[UniversalDenominator]
References
Khmelnov, D.E. "Improved Algorithms for Solving Difference and q-Difference Equations." Programming and Computer Software. Vol. 26 No. 2. (2000): 107-115. Translated from Programmirovanie. No. 2.
Man, Yiu-Kwong, and Wright, Francis J. "Fast Polynomial Dispersion Computation and its Application to Indefinite Summation." Proceedings of ISSAC'94, pp. 175-180. ACM Press: New York, 1994.
Download Help Document