Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
PolynomialIdeals[NumberOfSolutions] - compute the number of solutions over the algebraic closure
Calling Sequence
NumberOfSolutions(J)
NumberOfSolutions(G, tord)
Parameters
J
-
a polynomial ideal
G
a Groebner basis
a monomial order
Description
The NumberOfSolutions command computes the number of solutions of a system over the algebraic closure of the coefficient field, including multiplicities. A zero-dimensional system has a finite number of solutions.
Let G be a Groebner basis for the ideal, then the number of solutions is equal to the number of monomials not divisible by a leading monomial of G.
This function is part of the PolynomialIdeals package, and can be used in the form NumberOfSolutions(..) only after executing the command with(PolynomialIdeals). However, it can always be accessed through the long form of the command using PolynomialIdeals[NumberOfSolutions](..).
Examples
Observe that the generators of J are already a Groebner basis with respect to plex(x,y). The monomials not divisible by x^2 or y^3 are
See Also
Groebner[Basis], PolynomialIdeals[IsZeroDimensional]
References
Cox, D.; Little, J.; and O'Shea, D. Using Algebraic Geometry. New York: Springer-Verlag, 1998.
Download Help Document