Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Overview of the GF (Galois Field) Package
Calling Sequence
GF(p, k, a)
Parameters
p
-
prime integer
k
positive integer
a
(optional) irreducible polynomial of degree k over the integers mod p
Description
The GF command returns a module G of procedures and constants for doing arithmetic in the finite field GF(p^k), a Galois Field with elements. The field GF(p^k) is defined by the field extension GF(p)[x]/(a) where a is an irreducible polynomial of degree k over the integers mod p.
If a is not specified, an irreducible polynomial of degree k over the integers mod p is chosen at random. It can be accessed as the constant G:-extension. The elements of GF(p^k) are represented using the representation.
First, you need to define an instance of a Galois field using, for example, G := GF(2, 3). This defines all operations for G, the field of characteristic 2 with 8 elements.
The G:-input and G:-output commands convert from an integer in the range to the corresponding polynomial and back. Alternatively, G:-ConvertIn and G:-ConvertOut convert an element from GF(p^k) to a Maple sum of products, a univariate polynomial where the variable used is that given in the argument a. Otherwise the name `?` is used.
Arithmetic in the field is defined by the following functions. G:-`+`, G:-`-`, G:-`*`, G:-`^`, G:-inverse, G:-`/`
Field arithmetic can be written very naturally by using a use statement; see the examples below.
The additive and multiplicative identities are given by G:-zero and G:-one.
The G:-trace, G:-norm, and G:-order commands compute the trace, norm and multiplicative order of an element from GF(p^k) respectively.
The G:-random command returns a random element from GF(p^k).
The G:-PrimitiveElement command generates a primitive element at random.
The G:-isPrimitiveElement command tests whether an element from GF(p^k) is a primitive element, being a generator for the multiplicative group GF(p^k) - {0}.
For backwards compatibility, exports of the module returned by the GF command can also be accessed by indexed notation, such as G[':-ConvertIn']. However, using the more modern form G:-ConvertIn, you do not need to quote the name to avoid evaluation.
Examples
The use statement, if used carefully, can make arithmetic operations in the field much more natural.
See Also
Domains, mod, modp1
Download Help Document