Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Tensor[SpinorInnerProduct] - calculate the inner product of 2 spinors
Calling Sequences
SpinorInnerProduct(S, T)
Parameters
S, T - two spinors or spinor-tensors of the same spinor type
Description
The spinor inner product of two spinors S and T of the same type is calculated by contracting each pair of corresponding spinor indices (one from S and one from T) with the appropriate epsilon spinor.
For example, the inner product of two covariant rank 1 spinors with components S_A and T_B is epsilon^{AB} S_A T_B. The inner product of two contravariant rank 1 spinors with components S^A and T^B is epsilon_{AB} S^A T^B. The inner product of two contravariant rank 2 spinors with components S_{AX} and T_{BY} is epsilon^{AB} epsilon^{XY} S_{AX} T_{BY}.
If S and T are odd rank spinors, then SpinorInnerProduct(S, T) = -SpinorInnerProduct(T, S) and therefore SpinorInnerProduct(S, S) = 0. (Strictly speaking, the spinor inner product is really just a bilinear pairing -- it is not a true inner product because it is not always symmetric in its arguments.)
If S and T are even rank spinors, then SpinorInnerProduct(S, T) = SpinorInnerProduct(T, S).
Unlike TensorInnerProduct, SpinorInnerProduct does not require specification of a metric tensor to perform the contractions.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form SpinorInnerProduct(...) only after executing the commands with(DifferentialGeometry); with(Tensor); in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-SpinorInnerProduct.
Examples
Example 1.
First create a vector bundle M with base coordinates [x, y, z, t] and fiber coordinates [z1, z2, w1, w2].
Define rank 1 spinors S1 and T1 and calculate their inner product.
Note the sign change:
The inner product of a rank 1 spinor with itself vanishes
Calculate the inner product of S1 and T1 from the definition.
Example 2.
Calculate the inner product of two rank 2 spinors S2 and T2.
Example 3.
Calculate the inner product of two rank 2 spinor-tensors S3 and T3. Note that in this example the result is a rank 2 tensor.
See Also
DifferentialGeometry, Tensor, ContractIndices, EpsilonSpinor, RaiseLowerSpinorIndices, SpacetimeConventions, TensorInnerProduct
Download Help Document