Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
DifferentialGeometry[Pullback] - pullback a differential p-form by the Jacobian of a transformation
Calling Sequence
Pullback(Phi, omega)
Parameters
Phi
-
a transformation from a manifold M to a manifold N
omega
a differential r-form on the manifold N, where r is not greater than the dimension of M
Description
The pullback of omega with respect to a transformation Phi: M -> Nis an r-form theta on the manifold M and is denoted by theta = Phi^*(omega). If p is a point of M and X_1, X_2, ..., X_r are vectors in T_pM, then:
theta(p)(X_1, X_2, ..., X_r) = omega(Phi_*(X_1), Phi_*(X_2), ..., Phi_*(X_r)) (*)
The pullback of a 0-form, that is, a real-valued function g on N, is the real-valued function f = g o Phi on M.
In components, let J be the Jacobian matrix of Phi computed with respect to a system of coordinates x^i on M and y^j on N and evaluated at p. Let a be the row vector whose entries are the components of a 1-form omega at q = Phi(p), computed with respect to the coordinate basis on N. Then the matrix vector product b = a.J gives the components of theta = Phi^*(omega) with respect to the coordinate basis on M.
From the definition (*), it follows that Phi^* is a homomorphism from the ring of all differential forms on N to the ring of differential forms on M, that is, Phi^*(omega1 + omega2) = Phi^*(omega1) + Phi^*(omega2) and Phi^*(omega1 &w omega2) = Phi^*(omega1) &w Phi^*(omega2) (**) for all forms omega1 and omega2 on N. Pullback uses property (*), applied to 1-forms, together with (**) to calculate the pullback of an r-form.
The Pullback command can be applied to a list of differential forms.
This command is part of the DifferentialGeometry package, and so can be used in the form Pullback(...) only after executing the command with(DifferentialGeometry). It can always be used in the long form DifferentialGeometry:-Pullback.
Examples
Example 1.
Calculate the pullback of the differential form omega1 with respect to the transformation Phi1 at the point p1 = [x = 1, y = 2]. Check this result using the Jacobian of Phi1.
We check this last result against a direct computation using the Jacobian of Phi1. First calculate the coordinates of q1 = Phi1(p1) and evaluate omega1 at this point.
The entries of b coincide with the components of theta1_at_p1.
Example 2.
Example 3.
Express the function f and the 2-form omega2 in spherical coordinates.
See Also
DifferentialGeometry, Pushforward, PushPullTensor, Transformation
Download Help Document