Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
DEtools[exterior_power] - return the exterior power of a differential operator
Calling Sequence
exterior_power(L, n, domain)
exterior_power(eqn, n, dvar)
Parameters
L
-
differential operator
n
positive integer
domain
list containing two names
eqn
homogeneous linear differential equation
dvar
dependent variable
Description
The input L is a differential operator. The output of this procedure is a linear differential operator of minimal order such that for all solutions of L, the determinant of the Wronskian is a solution of .
An important property of the exterior power is the following: If L has rational functions coefficients and L has a right-hand factor of order n, then M has a right-hand factor of order (in other words: has an exponential solution where is a rational function).
The argument domain describes the differential algebra. If this argument is the list , then the differential operators are notated with the symbols and . They are viewed as elements of the differential algebra where is the field of constants.
If the argument domain is omitted then the differential specified by the environment variable _Envdiffopdomain is used. If this environment variable is not set then the argument domain may not be omitted.
Instead of a differential operator, the input can also be a linear homogeneous differential equation, eqn. In this case the third argument must be the dependent variable dvar.
Examples
See Also
DEtools[expsols], diffop
Download Help Document