Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
numapprox[remez] - Remez algorithm for minimax rational approximation
Calling Sequence
remez(w, f, a, b, m, n, crit, 'maxerror')
Parameters
w
-
procedure representing a weight function w(x) > 0 on [a, b]
f
procedure representing the function f(x) to be approximated
a, b
numeric values specifying the interval [a, b]
m
integer specifying the desired degree of the numerator
n
integer specifying the desired degree of the denominator
crit
Array indexed containing an initial estimate of the critical set (i.e. the points of max/min of the error curve)
maxerror
name which will be assigned the minimax norm of
Description
This is not usually invoked as a user-level routine. See numapprox[minimax] for the standard user interface to the Remez algorithm.
This procedure computes the best minimax rational approximation of degree for a given real function f(x) on the interval [a, b] with respect to the positive weight function w(x).
Specifically, it computes the rational expression r(x) such that
(1)
is minimized over all rational expressions with numerator of degree m and denominator of degree n.
The value returned is an operator r such that is the desired approximation as a quotient of polynomials in Horner (nested multiplication) form.
Note that if f(x) is nonzero on the interval of approximation then the relative error will be minimized by specifying the weight function .
If then the best minimax polynomial approximation of degree m is computed.
The last argument 'maxerror' must be a name and upon return, its value will be an estimate of the minimax norm specified by equation (1) above.
Various levels of user information will be displayed during the computation if infolevel[remez] is assigned values between 1 and 3.
The command with(numapprox,remez) allows the use of the abbreviated form of this command.
Examples
w := proc(x) 1.0 end proc:
f := proc(x) evalf(exp(x)) end proc:
g := proc(x) if x=0 then 1.0 else evalf(tan(x)/x) end if end proc:
See Also
numapprox[minimax]
Download Help Document