Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
numapprox[pade] - compute a Pade approximation
Calling Sequence
pade(f, x=a, [m, n])
pade(f, x, [m, n])
Parameters
f
-
expression representing the function to be approximated
x
the variable appearing in f
a
the point about which to expand in a series
m, n
desired degree of numerator and denominator, respectively
Description
The function pade computes a Pade approximation of degree for the function f with respect to the variable x.
Specifically, f is expanded in a Taylor (or Laurent) series about the point (if a is not specified then the expansion is about the point ), to order , and then the Pade rational approximation is computed.
The Pade approximation is defined to be the rational function with and such that the Taylor (or Laurent) series expansion of has maximal initial agreement with the series expansion of f. In normal cases, the series expansion agrees through the term of degree .
If or if the third argument is simply an integer m then the Taylor (or Laurent) polynomial of degree m is computed.
Various levels of user information will be displayed during the computation if infolevel[pade] is assigned values between 1 and 3.
The command with(numapprox,pade) allows the use of the abbreviated form of this command.
Examples
See Also
convert[ratpoly], numapprox/hermite_pade, numapprox[chebpade], numapprox[laurent], taylor
Download Help Document