Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
numapprox[chebyshev] - Chebyshev series expansion
Calling Sequence
chebyshev(f, x=a..b, eps)
chebyshev(f, x, eps)
chebyshev(f, a..b, eps)
Parameters
f
-
procedure or expression representing the function
x
variable name appearing in f, if f is an expression
a, b
numerical values specifying the interval of approximation
eps
(optional) numeric value
Description
This function computes the Chebyshev series expansion of f, with respect to the variable x on the interval , valid to accuracy eps.
If the second argument is simply a name x then the equation is implied.
If the second argument is a range then the first argument is assumed to be a Maple operator and the result will be returned as an operator. Otherwise, the first argument is assumed to be an expression and the result will be returned as an expression.
If the third argument eps is present then it specifies the desired accuracy; otherwise, the value used is . It is an error to specify eps less than 10^(-Digits).
The expression or operator f must evaluate to a numerical value when x takes on a numerical value. Moreover, it must represent a function which is analytic in a region surrounding the interval .
The resulting series is expressed in terms of the Chebyshev polynomials with floating-point series coefficients. If 'ser' is the Chebyshev series then conversion to ordinary polynomial form can be accomplished via eval(ser, T=orthopoly[T]).
The series computed is the ``infinite'' Chebyshev series, truncated by dropping all terms with coefficients smaller than eps multiplied by the largest coefficient.
Note: The name T used in representing the Chebyshev polynomials is a global name, so the user must ensure that this name has no previous value.
The command with(numapprox,chebyshev) allows the use of the abbreviated form of this command.
Examples
See Also
numapprox, orthopoly, series, taylor
Download Help Document