Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
numapprox[chebpade] - compute a Chebyshev-Pade approximation
Calling Sequence
chebpade(f, x=a..b, [m, n])
chebpade(f, x, [m, n])
chebpade(f, a..b, [m, n])
Parameters
f
-
procedure or expression representing the function to be approximated
x
the variable appearing in f, if f is an expression
a, b
numerical values specifying the interval of approximation
m, n
desired degree of numerator and denominator, respectively
Description
The function chebpade computes a Chebyshev-Pade approximation of degree for the function f.
Specifically, f is expanded in a Chebyshev series on the interval (if is not specified then the interval is understood), and then the Chebyshev-Pade rational approximation is computed.
If or if the third argument is simply an integer m then the Chebyshev series of degree m is computed.
The Chebyshev-Pade approximation is defined to be the rational function with and such that the Chebyshev series expansion of has maximal initial agreement with the Chebyshev series expansion of f. In normal cases, the series expansion agrees through the term of degree .
If the second argument is a range then the first argument is understood to be a Maple operator, and the result will be returned as an operator. If the second argument is an equation , or a name x, then the first argument is understood to be an expression in the variable x, and the result will be returned as an expression. In all cases, the numerator and denominator will be expressed in terms of the Chebyshev polynomials . See orthopoly[T].
The method used is based on transforming the Chebyshev series to a power series with the same coefficients, computing a Pade approximation for the power series, and then converting back to the appropriate Chebyshev-Pade approximation.
Note that for the purpose of evaluating a rational function efficiently (i.e. minimizing the number of arithmetic operations), the rational function should be converted to a continued-fraction form. See numapprox[confracform].
Various levels of user information will be displayed during the computation if infolevel[chebpade] is assigned values between 1 and 3.
The command with(numapprox,chebpade) allows the use of the abbreviated form of this command.
Examples
Check agreement of the Chebyshev series to 7 digits of accuracy.
See Also
convert/ratpoly, numapprox[chebyshev], numapprox[confracform], numapprox[minimax], orthopoly[T]
References
Geddes, K.O. "Block Structure in the Chebyshev-Pade Table." SIAM J. Numer. Anal., Vol. 18(5). (Oct. 1981): 844-861.
Download Help Document