Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
numapprox[chebdeg] - degree of a polynomial in Chebyshev form
Calling Sequence
chebdeg(p)
Parameters
p
-
expression assumed to be a Chebyshev series
Description
Given a polynomial p expressed as a Chebyshev series, determine the degree of the polynomial (i.e. the largest k such that appears as a basis polynomial).
All Chebyshev basis polynomials which appear must have the same second argument x (which can be any expression).
The input polynomial must be in expanded form (i.e. a sum of products). Normally, each term in the sum contains one and only one factor except that if there are terms in the sum containing no factor then each such term t is interpreted to represent (i.e. it is assumed to be a term of degree 0).
The command with(numapprox,chebdeg) allows the use of the abbreviated form of this command.
Examples
See Also
numapprox[chebsort], numapprox[chebyshev], orthopoly[T]
Download Help Document