Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
gfun[gftypes] - describe available types of generating functions
Description
A generating function is an analytic encoding of numerical data. It is a formal power series which can be manipulated algebraically in ways which parallel the manipulation of the (often combinatorial) objects they represent. The gfun package recognizes several different ways to represent the information in a list l.
The following types of generating functions are accepted by the gfun package.
'ogf'
If type is (ordinary generating function), then the coefficients are the elements of l. For example, the which corresponds to the list, [1, 1, 2, 3, 5, 8], is .
'egf'
If type is (exponential generating function), then the ith coefficient is . For example, the which corresponds to to the list, [1, 1, 2, 3, 5, 8], is .
'revogf'
If type is , then the series is the reciprocal of the ordinary generating function.
'revegf'
If type is , then the series is the reciprocal of the exponential generating function.
'lgdogf'
If type is , then the series is the logarithmic derivative of the ordinary generating function.
'lgdegf'
If type is , then the series is the logarithmic derivative of the exponential generating function.
'Laplace'
If type is , then the ith coefficient is .
You can define types by creating a procedure gfun[`listtoseries/mytypeofgf`], which accepts a list and a variable as input, and yields a series in this variable. This series must be of type taylor. In particular, it cannot have negative exponents.
See Also
gfun, series
Download Help Document