Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
VariationalCalculus[Weierstrass] - compute the Weierstrass excess function
Calling Sequence
Weierstrass(f, t, x(t), p)
Parameters
f
-
expression in t, x(t), and x'(t)
t
independent variable
x(t)
unknown function (or list of functions)
p
name to use for the vector p[1..n]
Description
The Weierstrass(f, t, x, x(t), p) command computes the Weierstrass excess function
The output is unsimplified. There are many techniques that can be used to simplify the output: factor, collect, combine, or complete the square.
If is positive when is the extremal, except when , the extremal provides a strong local minimum.
The Cauchy-Schwarz inequality can be used to determine the sign of the expression.
Examples
A Lagrange Multiplier Problem (Queen Dido's problem): Find the maximum area enclosed by a curve of length .
See Also
collect, combine, eval, factor, Student[Precalculus][CompleteSquare], VariationalCalculus, VariationalCalculus[EulerLagrange]
Download Help Document