Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
MatrixPolynomialAlgebra[MatrixGCRD] - compute a greatest common right divisor of 2 matrices of polynomials in row-reduced form
MatrixPolynomialAlgebra[MatrixGCLD] - compute a greatest common left divisor of 2 matrices of polynomials in column-reduced form
Calling Sequence
MatrixGCRD(A, B, x, U, V)
MatrixGCLD(A, B, x, U, V)
Parameters
A
-
Matrix of polynomials
B
x
variable name of the polynomial domain
U
(optional) list of two matrices of polynomials
V
Description
The MatrixGCRD(A, B, x) command computes a right matrix GCD of two matrices of polynomials. Both input matrices of polynomials can be square or rectangular, but must have the same number of columns. The entries are either univariate polynomials in x over the field of rational numbers Q, or rational expressions over Q (that is, univariate polynomials in x with coefficients in Q(a1,...,an)).
It is required that the matrix of polynomials have full column rank.
The fourth argument is optional. It is used to return a list of matrices. These matrices satisfy the matrix linear diophantine equation U1 . A + U2 . B = MatrixGCRD(A,B).
The fifth argument is optional. It is used to return a list of matrices. These matrices satisfy the matrix linear diophantine equation . This is useful. If B is square and nonsingular this gives a left-reduced matrix rational function.
The MatrixGCLD(A, B, x) command returns a left matrix GCD with optional arguments for returning solutions for matrix linear diophantine equations and right-reduced matrix rational functions. It is required that the matrix of polynomials have full row rank.
The method used is a fraction-free algorithm by Beckermann and Labahn that computes a matrix GCD using Mahler systems.
Examples
Left matrix GCDs:
Left matrix extended GCD:
Left matrix extended GCD with 2 matrix diophantine equations:
Right matrix GCDs:
Right matrix extended GCD:
Right matrix extended GCD with 2 matrix diophantine equations:
See Also
expand, indets, map, Matrix, MatrixPolynomialAlgebra, MatrixPolynomialAlgebra[HermiteForm], MatrixPolynomialAlgebra[MahlerSystem], MatrixPolynomialAlgebra[MatrixLCLM], MatrixPolynomialAlgebra[PopovForm]
References
Beckermann, B., and Labahn, G. "Fraction-free Computation of Matrix Rational Interpolants and Matrix GCDs." SIAM Journal on Matrix Analysis and Applications. Vol. 22 No. 1, (2000): 114-144.
Download Help Document