Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
MatrixPolynomialAlgebra[LeftDivision] - compute a left quotient and remainder of 2 matrices of polynomials
MatrixPolynomialAlgebra[RightDivision] - compute a right quotient and remainder of 2 matrices of polynomials
Calling Sequence
LeftDivision(A, B, x)
RightDivision(A, B, x)
Parameters
A
-
Matrix of polynomials
B
x
variable name of the polynomial domain
Description
The LeftDivision(A, B, x) command computes a left quotient Q and a remainder R such that where is strictly proper. That is, is a zero matrix. The input matrices must have the same number of rows, and B must be a square nonsingular matrix of polynomials.
The RightDivision(A, B, x) command computes a right quotient Q and a remainder R such that where is strictly proper. That is, is a zero matrix. The input matrices must have the same number of columns, and B must be a square nonsingular matrix of polynomials.
The quotient and the remainder are returned in a list.
Examples
See Also
expand, LinearAlgebra[MatrixInverse], map, Matrix, MatrixPolynomialAlgebra, op
Download Help Document