Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
MatrixPolynomialAlgebra[Lcoeff] - compute the leading coefficient of a matrix of polynomials
MatrixPolynomialAlgebra[Tcoeff] - compute the trailing coefficient of a matrix of polynomials
Calling Sequence
Lcoeff(A, x)
Lcoeff[row](A, x)
Lcoeff[column](A, x)
Tcoeff(A, x)
Tcoeff[row](A, x)
Tcoeff[column](A, x)
Parameters
A
-
Matrix
x
name; specify the variable in which the entries of A are rational polynomials over Q
Description
The Lcoeff(A,x) command computes the leading coefficient of a matrix of polynomials A.
The Lcoeff[row](A,x) command computes the leading row coefficient of A. That is, it computes a matrix with rows that are the leading coefficient of each row of A.
The Lcoeff[column](A,x) command computes the leading column coefficient of A.
The Tcoeff(A,x), Tcoeff[row](A,x), and Tcoeff[column](A,x) commands compute the trailing coefficient, trailing row coefficient, and trailing column coefficients of A, respectively.
Examples
See Also
indets, Matrix, MatrixPolynomialAlgebra, MatrixPolynomialAlgebra[Coeff], MatrixPolynomialAlgebra[Degree]
Download Help Document