Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
MatrixPolynomialAlgebra[Degree] - compute the degree of a matrix of polynomials.
MatrixPolynomialAlgebra[Ldegree] - compute the low degree of a matrix of polynomials.
Calling Sequence
Degree(A, x)
Degree[row](A, x)
Degree[column](A, x)
Ldegree(A, x)
Ldegree[row](A, x)
Ldegree[column](A, x)
Parameters
A
-
Matrix
x
name; specify the variable in which the entries of A are rational polynomials over Q
Description
The Degree(A,x) and Ldegree(A,x) commands compute the highest degree and the lowest degree of a matrix of polynomials.
The Degree[row](A,x) and Ldegree[row](A,x) commands compute the highest degree and lowest degree of each row of a matrix of polynomials. The row degree is returned as a list of integers.
The Degree[column](A,x) and Ldegree[column](A,x) commands compute the highest degree and lowest degree of each column of a matrix of polynomials. The column degree is returned as a list of integers.
Examples
See Also
indets, Matrix, MatrixPolynomialAlgebra
Download Help Document