Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
MatrixPolynomialAlgebra[ColumnReducedForm] - compute a column-reduced form of a Matrix
MatrixPolynomialAlgebra[RowReducedForm] - compute a row-reduced form of a Matrix
Calling Sequence
ColumnReducedForm(A, x, U)
RowReducedForm(A, x, U)
Parameters
A
-
Matrix
x
variable name of the polynomial domain
U
(optional) name to return unimodular multiplier
Description
The ColumnReducedForm(A,x) command computes a column-reduced form of an m x n rectangular matrix of univariate polynomials in x over the field of rational numbers Q, or rational expressions over Q (that is, univariate polynomials in x with coefficients in Q(a1,...,an)).
The RowReducedForm(A,x) command computes a row-reduced form over such domains.
A column-reduced form is one in which the column leading coefficient matrix has the same column rank as the rank of the matrix of polynomials. A row reduced form has the same properties but with respect to the leading row.
The column-reduced form is obtained by elementary column operations, which include interchanging columns, multiplying a column by a unit, or subtracting a polynomial multiple of one column from another. The row-reduced form uses similar row operations. The method used is a fraction-free algorithm by Beckermann and Labahn.
The optional third argument returns a unimodular matrix of elementary operations having the property that in the column-reduced case and in the row-reduced case.
Examples
See Also
expand, indets, LinearAlgebra[Determinant], map, Matrix, MatrixPolynomialAlgebra, MatrixPolynomialAlgebra[Coeff], MatrixPolynomialAlgebra[Degree], MatrixPolynomialAlgebra[HermiteForm], MatrixPolynomialAlgebra[PopovForm]
References
Beckermann, B. and Labahn, G. "Fraction-free Computation of Matrix Rational Interpolants and Matrix GCDs." SIAM Journal on Matrix Analysis and Applications. Vol. 22 No. 1, (2000): 114-144.
Download Help Document