Details for SergeType
|
Description
|
|
•
|
The command SegreType uses the algorithm of E. Zakhary and J. Carminati, A New Algorithm for the Segre Classification of the Trace-Free Ricci Tensor, General Relativity and Gravitation,Vol 36. (2004), 1015-1038 to Segre type. The algorithm first calculates the Plebanski-Petrov type and then the Segre type.
|
•
|
If the Plebanski-Petrov type of the Ricci R tensor is "O", then the Segre type of R is [(1,111)], [1,(111)], [(1,11),1], or [(2,11)].
|
•
|
If the Plebanski-Petrov type of the Ricci R tensor is "N", then the Segre type of R is [(2,1)1] or [(3,1)].
|
•
|
If the Plebanski-Petrov type of the Ricci R tensor is "D", then the Segre type of R is [(1,1)(11)], [1,1(11)], [(1,1)11], [2,(11)], or [ZbarZ,(11)].
|
•
|
If the Plebanski-Petrov type of the Ricci R tensor is "III", then the Segre type of R is [3,1].
|
•
|
If the Plebanski-Petrov type of the Ricci R tensor is "II", then the Segre type of R is [2,11].
|
•
|
If the Plebanski-Petrov type of the Ricci R tensor is "I", then the Segre type of R is [1,111] or [ZbarZ11].
|
•
|
The algorithm depends upon certain invariants calculated from the Newman-Penrose Ricci scalars Phi00, Phi01, Phi02, Phi10, Phi11, Phi120, Phi121, Phi22. These invariants are:
|
–
|
Chi0 = 2*(Phi00*Phi02 - Phi01^2)
|
–
|
Chi1 = Phi00*Phi12 + Phi02*Phi10 - 2*Phi01*Phi11
|
–
|
Chi2 = 1/3*(Phi00*Phi22 - 2*Phi01*Phi21 + Phi02*Phi20 + 4*Phi10*Phi12 - 4*Phi11^2)
|
–
|
Chi3 = Phi10*Phi22 - 2*Phi11*Phi21 + Phi12*Phi20
|
–
|
Chi4 = 2*(Phi20*Phi22 - Phi21^2)
|
–
|
E00 = 4*(Phi00*Phi11 - Phi01*Phi10)
|
–
|
E01 = 2*(Phi00*Phi12 - Phi02*Phi10)
|
–
|
E02 = 2*(Phi01*Phi12 - Phi02*Phi11)
|
–
|
E10 = 2*(Phi00*Phi21 - Phi20*Phi01)
|
–
|
E11 = Phi00*Phi22 - Phi02*Phi20
|
–
|
E12 = 2*(Phi01*Phi22 - Phi02*Phi21)
|
–
|
E20 = 2*(Phi01*Phi21 - Phi20*Phi11)
|
–
|
E21 = 2*(Phi10*Phi22 - Phi20*Phi02)
|
–
|
E22 = 4*(Phi11*Phi22 - Phi12*Phi21)
|
–
|
Delta_Phi = Phi11^2 - Phi01*Phi21)
|
–
|
r1 = 2*(Chi2 - 2*Phi10*Phi12 + 2*Phi11^2)
|
–
|
tildeChi0 = 2*(E00*E02 - E01^2)
|
–
|
tidleChi2 = E00*E22 - 2*E01*E21 + E02*E20 + 4*E10*E12 - 4*E11^2
|
–
|
Ip = 1/3*(Chi0*Chi4 - 4*Chi1*Chi3 + 3*Chi2^2)
|
–
|
Jp = Chi0*Chi2*Chi4 + 2*Chi1*Chi2*Chi3 - Chi0*Chi3^2 - Chi1^2*Chi4 - Chi2^3
|
–
|
r2 = 2*(Phi00*Phi11*Phi22 + Phi01*Phi12*Phi20 + Phi02*Phi10*Phi21 - Phi00*Phi12*Phi21 - Phi01*Phi10*Phi22 - Phi02*Phi11*Phi20)
|
–
|
k|_i = Jp*(E_{ii}- 2*r2*Ip*Phi_i/H
|
•
|
Here are the details of the algorithm.
|
–
|
The Plebanski-Petrov type of the Ricci R tensor is "O". Step 1. If all the Ricci scalars Phi00, Phi01, ... Phi22 = 0, then S = [(1,111)]. Step 2. Otherwise, if Delta_Phi = 0, then S = [(2,11)]. Step 3. Otherwise, if E00 > 0, then S = [1,(111)]. Step 4. Otherwise, if E00 <= 0, then S = [(1,11)1].
|
–
|
The Plebanski-Petrov type of the Ricci R tensor is "N". Step 1. If r1 = 0, then S = [(3,1)], otherwise S = [(2,1)1].
|
–
|
The Plebanski-Petrov type of the Ricci R tensor is "D". Step 1. If r1 = 0, then S = [ZZ(1,1)]. Step 2. If r1 <> 0 and all the E00, E01, ... E22 =0, then S = [(1,1)(11)]. Step 3. If r1 <> 0, Chi0 <> 0 and tildeChi0 = 0, then S = [(2,11)]. Step 4. If r1 <> 0, Chi0 <> 0, tildeChi0 = 0 and tildeChi2 = 0, then S = [2,(11)]. Step 5. If H= 0, then S = [2,(11)], while if H < 0, then S = [ZZ,(11)].
|
–
|
The Plebanski-Petrov type of the Ricci R tensor is "III". Then Segre type of R is [3,1].
|
–
|
The Plebanski-Petrov type of the Ricci R tensor is "II". Then Segre type of R is [2,11].
|
–
|
The Plebanski-Petrov type of the Ricci R tensor is "I". Step 1. If Dp < 0, then S =[1,111] while if Dp > 0, then S = [ZZ11].
|
|
|