Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
DifferentialGeometry[PullbackVector] - find (if possible) a vector field whose pushforward by the Jacobian of a given transformation is a given vector field
Calling Sequence
PullbackVector(Phi, Y, S, freevar)
Parameters
Phi
-
a transformation from a manifold M to a manifold N
Y
a vector field on N
S
(optional) a list of independent vector fields on M; the default is the standard local frame for the tangent bundle of M
freevar
(optional) freevariable = k, where k is an unassigned Maple name
Description
This procedures finds all vector fields X in the span of S such that Phi_*(X) = Y, where Phi_* is the Jacobian of Phi. If Phi is a local immersion, then Phi_* is injective and the vector X, if it exists, is unique. If Phi is not a local immersion, then the optional argument freevariable = k can be used to specify the name of the indexed variable that will be used to parameterize the possiblities for X.
The kernel of Phi_* can be computed by taking Y to be the zero vector.
If no vector field X exists such that Phi_*(X) = Y, then NULL is returned.
This command is part of the DifferentialGeometry package, and so can be used in the form PullbackVector(...) only after executing the command with(DifferentialGeometry). It can always be used in the long form DifferentialGeometry:-PullbackVector.
Examples
Example 1.
Suppose Phi: M -> N is an imbedding and Y is a vector field on N which is tangent to the image of M. Then there exists a unique vector field X on M such that Phi_*(X) = Y; and X can be found using the PullbackVector command. For example, the vectors Y1 and Y2 defined below are both tangent to the unit 3-sphere x^2 + y^2 + z^2 + w^2 = 1 and therefore can be pulled-back by the stereographic projection map Phi1 to the 3-dimensional Euclidean space E3 with coordinates [r, s, t].
We remark that since the vector fields X1 and X2 are uniquely determined, the Lie bracket relations are preserved.
Example 2.
In the following example the map Phi2 is not a local immersion. We can use the freevariable option to specify the name of the indexed variable that will be used to parameterize the vectors X2 such that Phi2_*(X2) = Y2.
We can use the optional third argument to force the vector to belong to a given subspace.
See Also
DifferentialGeometry, Pushforward, Transformation
Download Help Document