Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Query[Subalgebra] - check if a list of vectors defines a Lie subalgebra
Calling Sequences
Query(S, "Subalgebra")
LieAlgebraCheck(S, parm, "Subalgebra")
Parameters
S - a list of independent vectors in a Lie algebra g
parm - (optional) a set of parameters appearing in the list of vectors S. It is assumed that the set of vectors S is well-defined when the parameters vanish.
Description
A list of vectors S defines a basis for a Lie sub-algebra if [x, y] in span(S) for all x, y in S.
Query(S, "Subalgebra") returns true if the set S defines a subalgebra.
Query(S, parm, "Subalgebra") returns a sequence TF, Eq, Soln, SubAlgList. Here TF is true if Maple finds parameter values for which S is a subalgebra and false otherwise; Eq is the set of equations (with the variables in parm as unknowns) which must be satisfied for S to be a subalgebra; Soln is the list of solutions to the equations Eq; and SubAlgList is the list of subalgebras obtained from the parameter values given by the different solutions in Soln.
The program calculates the defining equations Eq for S to be a subalgebra as follows. First the list of vectors S is evaluated with the parameters set to zero to obtain a set of vectors S0. The program ComplementaryBasis is then used to calculate a complement C to S0. The list of vectors B = [S, C] then gives a basis for the entire Lie algebra g. For each x, y in S, the bracket [x, y] is calculated and expressed as a linear combination of the vectors in the basis B. The components of [x, y] in C must all vanish for S to be a Lie subalgebra.
We remark that the equations Eq, which the parameters must satisfy in order for S to be a subalgebra, will in general be a system of coupled quadratic equations. Maple may not be able to solve these equations or may not solve them in full generality.
The command Query is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form Query(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Query(...).
Examples
Example 1.
First initialize a Lie algebra.
The vectors S1 = [e2, e3, e4] do not determine a subalgebra while the vectors S2 = [e1, e3, e4] do.
We find the values of a1, a2, for which S3 = [e2, e1 + a1*e3 + a2*e4] determines a Lie subalgebra.
There are no values of the parameters a1, a2 for which S4 = [e2, e3 + a1*e2 + a2*e4] determines a Lie sub-algebra.
See Also
DifferentialGeometry, LieAlgebras, Query
Download Help Document