Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Query[Gradation] - check if a list of subspaces defines a gradation of a Lie algebra
Calling Sequences
Query([g0, g1, ..., gN], "Gradation")
Parameters
g0, g1, - a list of independent vectors defining subspaces of a Lie algebra g
Description
A collection of subspaces g0, g1, ... gN of a Lie algebra g defines a gradation of g if g = g0 + g1 + ... + gN (vector space direct sum) with [gi, gj] in g(i + j) for i + j <= N and [gi, gj] = 0 for i + j > N.
Query([g0, g1, g2, ... gN], "Gradation") returns true if the subspaces g0, g1, g2, ..., gN define a gradation of the Lie algebra g.
The command Query is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form Query(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Query(...).
Examples
Example 1.
The Lie algebra of 4 x 4 Upper triangular matrices is a 10 dimensional Lie algebra which is naturally graded - g0 consists of the matrices with only non-zero elements on the diagonal, g1 consists of the matrices with non-elements immediately above the diagonal (the super diagonal) and so on.
We use Query to verify this. First we use the program MatrixAlgebras to generate the Lie algebra data structure for the Lie algebra of upper triangular matrices. Here eij denotes the matrix with a 1 in the i-th row and j-th column.
To display the Lie algebra multiplication table, we need to increase the value of the interface parameter rtablesize.
Now define the 4 subspaces which will define our gradation.
See Also
DifferentialGeometry, LieAlgebras, MatrixAlgebras, MultiplicationTable, Query
Download Help Document