Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Query[Filtration] - check if a list of subspaces defines a decreasing filtration of a Lie algebra
Calling Sequences
Query([f0, f1, ..., fN], "Filtration")
Parameters
f0, f1, - a list of independent vectors defining subspaces of a Lie algebra g
Description
A collection of subspaces f0, f1, ... fN of a Lie algebra g defines a decreasing filtration of g if fi in fj for i >= j, [fi, fj] in f(i + j) for i + j <=N and [fi, fj] in fN for i + j > N.
Query([f0, f1, ... fN], "Filtration") returns true if the subspaces f0, f1, ..., fN define a decreasing filtration of the Lie algebra g and false otherwise.
The command Query is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form Query(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Query(...).
Examples
Example 1.
First we initialize a Lie algebra.
Now define a sequence of 4 subspaces.
We check that this sequence of Lie algebras defines a decreasing filtration.
Example 2.
Here's an example which does not define a filtration. To see the specific brackets which fail to satisfy the filtration definition, we set the infolevel for Query to 2.
bracket of subspace 0 and 0 is [2*e1, e2, e2+e3]
bracket of subspace 0 and 1 is [-e1, -e2]
bracket of subspace 0 and 2 is [-e1, -e2]
This shows that [f0, f2] is not contained in f2.
See Also
DifferentialGeometry, LieAlgebras, infolevel, Query
Download Help Document