Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
JetCalculus[ProjectionTransformation] - construct the canonical projection map between jet spaces of a fiber bundle
Calling Sequences
ProjectionTransformation(n, m)
Parameters
n - a non-negative integer, the order for the domain jet space
m - a non-negative integer, the order for the range jet space, m <= n
Description
Let E -> M a fiber bundle. Then ProjectionTransformation(n, m) defines the canonical projection map from J^n(E) to J^m(E).
The command ProjectionTransformation is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form ProjectionTransformation(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-ProjectionTransformation(...).
Examples
Example 1.
Define the 6-th order jet bundle J^6(E) for E = R^2 x R, with coordinates (x, y, u) -> (x, y).
Define the canonical projection from J^6(E) to J^3(E).
See Also
DifferentialGeometry, JetCalculus, DGinfo, Pullback, Transformation
Download Help Document