Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
GroupActions[IsotropySubalgebra] - find the infinitesimal isotropy subalgebra of a Lie algebra of vector fields and the representation of the isotropy subalgebra on the tangent space
Calling Sequences
IsotropySubalgebra(Gamma, p, option)
Parameters
Gamma - a list of vector fields on a manifold M
p - a list of coordinate values [x1 = p1, x2 = p2, ...] specifying a point p in M
option - the optional argument output = O, where O is a list containing the keywords "Vector", "Representation", and/or the name of an initialized abstract algebra for the Lie algebra of vector fields Gamma.
Description
The isotropy subalgebra Gamma_p of a Lie algebra of vector fields Gamma at the point p is defined by Gamma_p = {X in Gamma | X_p = 0}. The Lie bracket defines a natural representation rho of Gamma_p on the tangent space T_pM by rho(X)(Y) = [X, Y], where X in Gamma_p and Y in T_pM.
IsotropySubalgebra returns a list of vectors giving the isotropy subalgebra Gamma_p as a subalgebra of Gamma.
With output = ["Vector", "Representation"], two lists are returned. The first is a list of vectors giving the isotropy subalgebra Gamma_p as a subalgebra of Gamma and the second is the list of matrices defining the linear isotropy representation with respect to the standard basis for T_pM.
Let algname be the name of the abstract Lie algebra g created from Gamma. With output = ["Vector", algname], the second list returned gives the isotropy subalgebra as a subalgebra of the abstract Lie algebra g.
The command IsotropySubalgebra is part of the DifferentialGeometry:-GroupActions package. It can be used in the form IsotropySubalgebra(...) only after executing the commands with(DifferentialGeometry) and with(GroupActions), but can always be used by executing DifferentialGeometry:-GroupActions:-IsotropySubalgebra(...).
Examples
Example 1.
We use the Retrieve command to obtain a Lie algebra of vector fields in the paper by Gonzalez-Lopez, Kamran, and Olver from the DifferentialGeometry Library. We compute the isotropy subalgebra and isotropy representation at the points [x = 0, y = 0] and [x = 1, y = 1].
We illustrate some different possible outputs from the IsotropySubalgebra program.
Note that the vectors in Iso2 all vanish at [x = 1, y =1]
It is apparent from the multiplication table that the pair [Alg1, S1] is a symmetric pair with respect to the complementary subspace T = [e1, e2]. Of course, we can check this with the command Query/"SymmetricPair".
The isotropy representation can be converted to a representation.
See Also
DifferentialGeometry, GroupActions, Library, LieAlgebras, LieAlgebraData, MultiplicationTable, Query, Representation, Retrieve
Download Help Document