Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
GraphTheory[BellmanFordAlgorithm] - find the cheapest weighted path using the Bellman-Ford algorithm
Calling Sequence
BellmanFordAlgorithm(G, s, t)
BellmanFordAlgorithm(G, s, T)
BellmanFordAlgorithm(G, s)
Parameters
G
-
a graph, unweighted, or weighted with no negative cycles
s, t
vertices of the graph G
T
list of vertices of the graph G
Description
The BellmanFordAlgorithm uses the Bellman-Ford algorithm to find the cheapest weighted path from s to t.
If G is an unweighted graph, the edges are assumed all to have weight 1.
If G is a weighted graph, BellmanFordAlgorithm(G,s,t) returns the cheapest weighted path from vertex s to vertex t in the graph G. If a path from s to t exists, the output is a list of the form where is the path and w is the weight of that path. If no such path exists the output is .
In the second calling sequence where T is a list of vertices of G, this is short for , except that the algorithm does not need to recompute cheapest paths.
In the third calling sequence where no destination vertices are given, this is short for BellmanFordAlgorithm(G,s, Vertices(G)), and the cheapest path from s to every vertex in G is output.
To compute distances between all pairs of vertices simultaneously, use the AllPairsDistance command. To ignore edge weights (and use a faster breadth-first search), use the ShortestPath command.
Note that G can have no negative cycles, which also means that any edges with negative weights must be directed (as otherwise the undirected negative weight edge forms a negative weight cycle between the vertices it connects). If G has no negative edge weights, DijkstrasAlgorithm may be able to find the cheapest paths more efficiently.
Examples
See Also
AllPairsDistance, DijkstrasAlgorithm, ShortestPath
Download Help Document