Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
EllipticF - Incomplete elliptic integral of the first kind
EllipticK - Complete elliptic integral of the first kind
EllipticCK - Complementary complete elliptic integral of the first kind
Calling Sequence
EllipticF(z, k)
EllipticK(k)
EllipticCK(k)
Parameters
z
-
algebraic expression (the sine of the amplitude)
k
algebraic expression (the parameter)
Description
EllipticF is the Incomplete Elliptic integral of the first kind and is defined by
FunctionAdvisor(definition, EllipticF);
EllipticK and EllipticCK are respectively the Complete and the Complementary Elliptic integrals of the first kind and are defined by
FunctionAdvisor( definition, EllipticK);
FunctionAdvisor( definition, EllipticCK);
EllipticK, EllipticCK and EllipticF are related by
FunctionAdvisor( relate, EllipticK,EllipticF);
FunctionAdvisor( relate, EllipticK,EllipticCK);
EllipticF is also identical to the InverseJacobiSN function
FunctionAdvisor(relate, EllipticF, InverseJacobiSN);
and therefore can be used to represent all the InverseJacobiPQ functions provided some restrictions on the function parameters hold.
Elliptic integrals and the related functions are well described in the Table of Integrals Series and Products, Gradshteyn and Ryzhik (G&R) and in the popular Handbook of Mathematical Functions edited by Abramowitz and Stegun (A&S). In A&S, these functions are expressed in terms of a parameter m, representing the square of the modulus k entering the definition of the Elliptic, JacobiPQ and InverseJacobiPQ functions in Maple and G&R. For example, the function shown in A&S is numerically equal to the Maple command.
It is worth noting the difference between the Legendre normal form of the Incomplete Elliptic integral of the first kind (see A&S 17.2.7), in Maple represented by EllipticF(z,k) but for the splitting of the square root in the denominator of the integrand (see definition lines above), and the normal trigonometric form of this elliptic integral (see A&S 17.2.6), in Maple represented by the InverseJacobiAM function
InverseJacobiAM(phi,k);
(7) = convert((7), Int);
For instance, for -Pi/2 <= phi <= Pi/2 these two forms can be related with ease by changing variables:
EllipticF(z,k);
(9) = convert((9), Int);
{z=sin(phi), _alpha1=sin(_theta1)}; # -1 <= z <= 1
PDEtools[dchange]((11), (10));
simplify((12)) assuming phi in RealRange(-Pi/2, Pi/2);
where the right-hand side is actually equal to the trigonometric form . The general relationship between these two forms and the restriction on the values of the parameters such that the relation is valid are given by
FunctionAdvisor( specialize, InverseJacobiAM, EllipticF);
FunctionAdvisor( specialize, EllipticF, InverseJacobiAM);
Examples
Reflection symmetry and special values for EllipticK and EllipticF
Branch points for EllipticF
Branch points and the branch cut for EllipticK
For in the cut, so for , EllipticK is continuous from below.
See Also
EllipticCE, EllipticCPi, EllipticE, EllipticPi, FunctionAdvisor, InverseJacobiAM, JacobiAM, RealRange, WeierstrassP.
Download Help Document