Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Tensor[NullVector] - construct a null vector from a solder form and a rank 1 spinor
Calling Sequences
NullVector(sigmaphi)
NullVector(sigmaphipsi)
Parameters
sigma - a spin-tensor defining a solder form on a 4-dimensional spacetime
phi, psi - rank 1 spinors
Description
Let be a metric on a 4-dimensional manifold with signature A null vector satisfies
Let be a solder form for the metricthat is, is a rank 3 spin-tensor such that The NullVector command accepts, as its first argument, a solder form with either covariant or contravariant tensor and spinor indices.
With two arguments, the NullVector command returns the real vector with components
• With three arguments, the NullVector command returns the (complex) vector with components
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form NullVector(...) only after executing the commands with(DifferentialGeometry); with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-NullVector.
Examples
Example 1.
First create the spinor bundle with spacetime coordinates and fiber coordinates .
Define a spacetime metric on with signature .
Define an orthonormal tetrad on with respect to the metric Use the command SolderForm to create a solder form .
Define rank 1 spinors and
Use the command NullVector to find the corrresponding null vectors .
We can use the command TensorInnerProduct to check that the vectors are indeed null vectors.
See Also
DifferentialGeometry, Tensor, NullTetrad, PrincipalNullDirections, SolderForm, TensorInnerProduct
Download Help Document